Determinants of lung function and airway hyperresponsiveness in asthmatic children

Danish Paediatric Asthma Center, Copenhagen University Hospital, Gentofte, DK-2900 Copenhagen, Denmark
Department of Paediatrics, Kolding Hospital, DK-6000 Kolding, Denmark
Karolinska Institutet at Astrid Lindgren Childrens Hospital, 171 76 Stockholm, Sweden
Department of Thoracic Medicine, Institute of Medicine, Haukeland University Hospital, N-5021 Bergen, Norway
Department of Respiratory Medicine and Allergology, 22185 Lund, Sweden
Voksentoppen, Department of Paediatrics, Rikshospitalet-Radiumhospitalet Medical Center, Faculty of medicine, University of Oslo, NO 0791 Oslo, Norway
Department of Paediatrics, Akademiska Barnsjukhus, 751 85 Uppsala, Sweden
Department of Paediatrics, Gothenburg University, Queen Silvia Children’s Hospital, SE -416 85 Gothenburg, Sweden
Channing Laboratory, Brigham and Women’s Hospital, and Harvard Medical School, MA 02115-5804, Boston, USA

Received 27 December 2006; accepted 9 January 2007
Available online 2 March 2007

Summary

Background: Asthma patients exhibit an increased rate of loss of lung function. Determinants to such decline are largely unknown and the modifying effect of steroid therapy is disputed. This cross-sectional study aimed to elucidate factors contributing to such decline and the possible modifying effect of steroid treatment.

Methods: We analyzed determinants of lung function and airway hyperresponsiveness (AHR) in a Scandinavian study of 2390 subjects from 550 families. Families were selected for the presence of two or more asthmatic children as part of a genetic study, Scandinavian Asthma Genetic Study (SAGA).

Results: The primary analysis studied the association between the lung function and delay of inhaled corticosteroids (ICS) after asthma diagnosis among asthmatic children and young adults with a history of regular ICS treatment (N = 919). FEV\textsubscript{1} percent predicted (FEV\textsubscript{1}% pred) was 0.25% lower per year of delay from diagnosis until treatment (p = 0.039). This association was significantly greater in allergy skin prick test negative children. There was no significant influence of gender, age at asthma onset, or smoking.

KEYWORDS
Steroid; FEV\textsubscript{1}; Airway hyperresponsiveness; Asthma

*Corresponding author. Tel.: +45 3977 7363; fax: +45 3977 7129.
E-mail address: Bisgaard@copsac.dk (H. Bisgaard).
In the secondary analysis of the whole population of 2390 asthmatics and non-asthmatics, FEV1% pred was inversely related to having asthmatic siblings (−7.9%; \(p<0.0001 \)), asthma diagnosis (−2.7%; \(p=0.0007 \)), smoking (−3.5%; \(p=0.0027 \)), and positive allergy skin prick test (−0.47% per test; \(p=0.012 \)), while positively related to being female gender (1.8%; \(p=0.0029 \)). Risk of AHR was higher by having asthmatic siblings (OR 2.7; \(p<0.0001 \)), being of female gender (OR 2.0; \(p<0.0001 \)), and having asthma (OR 2.0; \(p<0.0001 \)).

Conclusions: These data suggest that lung function is lower in asthmatics with delayed introduction of ICS therapy, smoking, and positive allergy skin prick test. Lung function is lower and AHR higher in female asthmatics and subjects with asthmatic siblings or established asthma.

© 2007 Elsevier Ltd. All rights reserved.
A more detailed methodological description is provided in Appendix A (on-line).

Skin prick tests were performed at the antecubital of all individuals with a standard panel of allergens; dog, cat, horse, Dermatophagoides farinae, Dermatophagoides pteronyssinus, grass pollen mix, tree pollen mix, mugwort, Alternaria, and Cladosporium (Soluprick® SD, ALK AB). Histamine (10 mg/mL) was used as a positive control and the diluent used for the allergens as the negative control. This outcome was analyzed as a numeric variable summarizing the number of positive tests (0–10).

Allergen-specific IgE was assayed by a Phadiatop® method with a mixture of the inhalant allergens used for skin prick testing. The test outcome was dichotomized into positive or negative for analysis.

Medical history was obtained by qualified doctors or research nurses from personal interviews based on standardized questionnaires with close-end response categories. History emphasized asthma history (age when the doctor diagnosed asthma). The test outcome was dichotomized into positive or negative for analysis.

Statistical analysis

Siblings with asthma requiring prophylactic therapy for at least 1 year were analyzed in a multiple linear regression model describing FEV1 percent predicted (FEV1% pred) by variables considered related to lung function and/or ICS delay. In order not to mask the association between ICS delay and lung function, care was taken not to include variables that could be affected by ICS delay and at the same time could affect FEV1% pred themselves, e.g., hyperreactivity. The initial model included: ICS delay, skin prick test, allergen-specific serum IgE, gender, asthma debut, smoking, and passive smoking.

All subjects were analyzed in a multiple linear regression model describing FEV1% pred by variables considered possibly related to lung function, including sibling with asthma, skin prick test, allergen-specific serum IgE, gender, asthma, smoking, passive smoking, and AHR.

All subjects were subsequently analyzed by a logistic regression model describing AHR by variables considered possibly related to AHR including sibling with asthma, skin prick test, allergen-specific serum IgE, gender, asthma, smoking, passive smoking, and FEV1% pred. In addition, a multiple linear regression model describing PD20 included the same variables.

Because individuals within a family are correlated both due to genetic and environmental similarities, we adjusted for this familial correlation using Proc Gen Med in SAS version 7.0. This appropriately reduces statistical significance based solely on the family correlation.

Results

Demographics (Table 1)

The total study comprised 550 families with 2390 individuals (53% males). Allocation to the study was unevenly distributed among centers and among the three Scandinavian countries: Denmark: 455 subjects (Copenhagen), 455 (Kolding); Sweden: 235 (Stockholm), 190 (Uppsala), 170 (Luleå), 165 (Gothenburg), 88 (Lund), Norway: 232 (Bergen), 203 (Trondheim), 197 (Oslo).

Primary study group comprised the 919 children with clinical asthma treated with prophylactic asthma therapy for at least 1 year before inclusion or for at least two consecutive seasons. AHR was found in 83% of these subjects. Mean FEV1 was 89% predicted. Sixty-five percent had positive skin prick test and positive allergen-specific serum IgE. Mean age of asthma debut was 3 years.

Secondary study group comprised all subjects (2390 individuals) including 1321 siblings (1136 with doctor-diagnosed asthma) and 1069 parents (225 with doctor-diagnosed asthma).

Lung function

Asthmatic siblings on regular ICS treatment: FEV1% pred was negatively related to ICS delay among asthmatic siblings (−0.25% per year; p = 0.039) (Fig. 1). Skin prick test, antigen-specific serum IgE, gender, smoking, and age at asthma debut did not add significantly to the asthmatic model. This association was significantly greater in skin test negative children (p = 0.0092).

All subjects: FEV1% pred was negatively related to having an asthmatic sibling (−7.9%; p < 0.0001), asthma (−2.7%; p = 0.0007), smoking (−3.5%; p = 0.0027), and positive skin prick test (−0.47% per test; p = 0.012) (Fig. 2), while positively related to being of female gender (1.8%; p = 0.0029). Passive smoking and allergen-specific serum IgE did not add significantly to the model.

The effect of age and asthma among siblings on FEV1% pred is depicted in Fig. 3A and B. Lung function in non-asthmatic siblings was higher with increasing age (p = 0.0001), while no such relation was present in siblings with an asthma diagnosis (p = 0.20). This effect was not gender specific (data not shown).

AHR

Risk of higher AHR was enhanced by being a sibling of an asthmatic (OR 2.7; p < 0.0001), being female (OR 2.0; p < 0.0001), and having asthma (OR 2.0; p < 0.0001). Active smoking, passive smoking, positive skin prick test, allergen-specific serum IgE, and FEV1% pred did not add significantly to the model.

Analysis of AHR was repeated for PD20 with similar results.

Discussion

Pre-bronchodilator FEV1 was 0.25% lower per year between asthma diagnosis and start of ICS treatment. The data did not allow an accurate estimate of the association of lung function and time after initiation of ICS because we do not know for how long the ICS treatment was maintained after initiation, but the data suggest an association between late introduction of ICS and lower lung function. This finding aligns with previous observational data from children and adults as well as one RCT in adult asthmatics, suggesting a disease modifying effect on pre-bronchodilator lung function if started shortly after symptom debut. However,
recent RCTs in schoolchildren8 and preschool children9,11 were unable to confirm such disease modifying effect from early steroid treatment. The disparate outcomes may be ascribed to fundamental differences in study designs or may be compatible with a treatment effect later in life affecting the natural decline in lung function while not apparent during childhood growth, or it may be due to differences in asthma severities.

The protective effect from ICS on lung function loss is small according to the current study (\(-0.25\%\) per year). It is questionable whether a 2.5\% reduction of FEV\(_{1}\) for a 10-year delay in ICS treatment will have any clinical consequences for the young asthmatics in adulthood.

Age at asthma onset showed no relation to lung function. Early onset of asthma has been associated with a negative outcome4,17,18 or no effect.19,20 A recent large cross-sectional pediatric cohort study of asthma revealed an independent relationship between asthma duration and asthma severity.4 The lack of evidence for such an association in the present study does not contradict this recent report.

Analyses of the secondary study group of asthmatics and their non-asthmatic siblings and parents showed that FEV\(_{1}\)%pred was most strongly influenced by membership in the sibling group independent of an asthma diagnosis. Siblings of asthmatics had 7.9\% lower FEV\(_{1}\)%pred and a 2.7-fold greater AHR. The lower lung function in siblings was clearly more pronounced in the younger age group.

Smoking was associated with an additional 3.5\% reduction in FEV\(_{1}\)%pred in the secondary study group of asthmatics.

Table 1
Demographic data for subjects in a family-based study of asthma genetics.

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Asthmatic siblings with a history of regular anti-inflammatory treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of subjects (males)</td>
<td>2390 (1278)</td>
</tr>
<tr>
<td></td>
<td>Age (years, median)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Height (cm, median)</td>
<td>167</td>
</tr>
<tr>
<td>Asthma</td>
<td>Number with doctor diagnosis</td>
<td>1361 (57%)</td>
</tr>
<tr>
<td>Asthma debut</td>
<td>Years (median)</td>
<td>12</td>
</tr>
<tr>
<td>ICS delay</td>
<td>Years (median)</td>
<td>NA</td>
</tr>
<tr>
<td>Smoking</td>
<td>Number (%)</td>
<td>340 (14%)</td>
</tr>
<tr>
<td>Passive smoking</td>
<td>Number (%)</td>
<td>616 (25%)</td>
</tr>
<tr>
<td>Positive SPT*</td>
<td>Number (%)</td>
<td>1199 (50%)</td>
</tr>
<tr>
<td>Positive RAST†</td>
<td>Number (%)</td>
<td>1130 (47%)</td>
</tr>
<tr>
<td>Positive AHR‡</td>
<td>Number (%) of positive</td>
<td>1631 (68%)</td>
</tr>
<tr>
<td>FEV(_{1})%pred (% (Mean 95% CI))</td>
<td>94 (94; 95)</td>
<td>89 (88; 90)</td>
</tr>
</tbody>
</table>

*Skin prick test.

†Antigen-specific IgE.

‡Airway hyperresponsive to metacholine.

Figure 1 FEV\(_{1}\)% predicted in siblings with asthma related to time before regular ICS treatment was started.

Figure 2 FEV\(_{1}\)% predicted in all subjects related to number of positive skin prick tests.

Table 1

<table>
<thead>
<tr>
<th></th>
<th>All</th>
<th>Asthmatic siblings with a history of regular anti-inflammatory treatment</th>
</tr>
</thead>
<tbody>
<tr>
<td>N</td>
<td>Number of subjects (males)</td>
<td>2390 (1278)</td>
</tr>
<tr>
<td></td>
<td>Age (years, median)</td>
<td>24</td>
</tr>
<tr>
<td></td>
<td>Height (cm, median)</td>
<td>167</td>
</tr>
<tr>
<td>Asthma</td>
<td>Number with doctor diagnosis</td>
<td>1361 (57%)</td>
</tr>
<tr>
<td>Asthma debut</td>
<td>Years (median)</td>
<td>12</td>
</tr>
<tr>
<td>ICS delay</td>
<td>Years (median)</td>
<td>NA</td>
</tr>
<tr>
<td>Smoking</td>
<td>Number (%)</td>
<td>340 (14%)</td>
</tr>
<tr>
<td>Passive smoking</td>
<td>Number (%)</td>
<td>616 (25%)</td>
</tr>
<tr>
<td>Positive SPT*</td>
<td>Number (%)</td>
<td>1199 (50%)</td>
</tr>
<tr>
<td>Positive RAST†</td>
<td>Number (%)</td>
<td>1130 (47%)</td>
</tr>
<tr>
<td>Positive AHR‡</td>
<td>Number (%) of positive</td>
<td>1631 (68%)</td>
</tr>
<tr>
<td>FEV(_{1})%pred (% (Mean 95% CI))</td>
<td>94 (94; 95)</td>
<td>89 (88; 90)</td>
</tr>
</tbody>
</table>
and non-asthmatics, consistent with a recent longitudinal cohort study with a 15-year follow-up, which showed that smoking contributed significantly to the decline in lung function in both asthmatics and non-asthmatics.1 Previous smaller reports were unable to demonstrate this additive effect of asthma and smoking.21,22

Allergy as reflected in positive skin prick tests was a significant predictor of lower lung function in the secondary study group. This finding is consistent with some previous longitudinal studies23,24 though not with others,25-27 as positive skin prick tests have even been found to predict a milder course.20 Allergen-specific serum IgE did not add significantly to the models describing lung function and AHR.

Being a female doubled the risk of AHR but provided a small but significantly higher lung function. Female gender was a marker of a worse prognosis in some studies18,28-30 though this was not apparent in other studies22,26,31 and one study even reported a better prognosis for females.32 That female gender is a predictor of a worse prognosis finds support in the observation that estrogen plays a role in asthma pathophysiology.33

Certain issues should be considered when the present data are interpreted. The study was cross-sectional and observational. The cohort had an inherent selection bias as subjects were only included if they belonged to families with at least two siblings with asthma as the study primarily aimed at genetic analyses. Recall bias could confound such retrospective collection of the time of onset of symptoms and start of ICS treatment, and we had no access to source data documenting asthma debut. Limitations include the small number of non-asthmatic siblings, which limit our ability to comment in detail on asthma development. On the other hand, the data quality was high since rigorous quality assurance was ensured and monitored in all centers, objective measurements were obtained through highly standardized methods and qualified doctors or research nurses obtained the data on asthma history from personal interviews based on standardized questionnaires with close-end response categories. Finally, the power of the study was high because of the large cohort size and the long age span. Therefore, we believe that the conclusions of the analyses are quite robust.

In conclusion, the study suggests that lower lung function is associated with delayed introduction of ICS therapy. Lung function is lower and AHR higher in subjects with asthmatic siblings, females and subjects with established asthma.

Conflict of interest. HB has been a consultant to, paid lecturer for and received research grants from Aerocrine, AstraZeneca, Altana, GSK, Merck, MedImmune and Pfizer. He does not hold stock or options in any pharmaceutical company in the respiratory field.

AG has been a paid lecturer for AstraZeneca, GSK, Merck, Boehringer and Pfizer.

LB has been paid lecturer for AstraZeneca, GSK, Merck, Boeringher and Schering-Plough.

GW has been paid lecturer for AstraZeneca, GSK and Merck. He does not hold stock or options in any pharmaceutical company.

Appendix A. Supplementary materials

Supplementary data associated with this article can be found in the online version at doi:10.1016/j.rmed.2007.01.013.

References